17CS834

Eighth Semester B.E. Degree Examination, Jan./Feb. 2023 System Modelling and Simulation

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Assume data if necessary.

Module-1

1 a. With a neat flow chart explain the various steps in a simulation study.

(10 Marks)

b. Discuss the advantages and disadvantages of simulation.

(10 Marks)

OR

2 a. Define the following terms:

i) System ii) Model iii) System state iv) Entity v) Attributes vi) List vii) Event viii) Event notice ix) Activity x) Delay. (10 Marks)

b. A grocery store has one checkout counter. Customers arrive at this checkout counter at random from 1 to 8 minutes apart and each inter-arrival has the same probability of occurrences. The service times vary from 1 to 6 minutes with probability given below.

 Service time
 1
 2
 3
 4
 5
 6

 Probability
 0.10
 0.20
 0.30
 0.25
 0.10
 0.05

Develop a simulation table for 10 customers. Consider the random digits for arrivals as -, 64, 112, 678, 289, 871, 583, 139, 423, 39 and service times as 84, 18, 87, 81, 06, 91, 79, 09, 64, 38 in sequence.

Find:

i) Average waiting time of a customer

ii) Average service time

iii) Probability that a customer has to wait in the queue.

iv) Probability of idle time of the server.

(10 Marks)

Module-2

a. Explain uniform distribution.

(10 Marks)

b. Explain exponential distribution.

(10 Marks)

OR

4 a. Explain queuing notation for parallel server systems.

(10 Marks)

b. Discuss characteristics of queuing systems.

(10 Marks)

Module-3

5 a. The sequence of numbers

0.44, 0.81, 0.14, 0.05, 0.93 has been generated. Use the Kolmogorov-Smirnov test with $\alpha = 0.05$ to learn whether the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. [$D_{\alpha} = 0.565$]. (10 Marks)

b. Generate five random numbers by linear congruential method with Y = 27, z = 17, z = 42, and z = 100

 $X_0 = 27$, a = 17, c = 43 and m = 100.

(10 Marks)

OR

- a. Suggest step by step procedure to generate random variates using inverse transform 6 technique for exponential distribution. (08 Marks) (12 Marks)
 - Generate three poisson variates with mean $\alpha = 0.2$, $e^{-\alpha} = e^{-0.2} = 0.8187$.

Module-4

- Discuss suggested estimators for distributions often used in simulation, (08 Marks) Discuss four steps in the development of a useful model of input data. (04 Marks)
 - Discuss various ways of obtaining information about a process even if data are not available. (08 Marks)

- Discuss measures of performance and their estimation. (10 Marks) 8
 - Discuss types of simulations with respect to output analysis. (05 Marks) (05 Marks)
 - Discuss stochastic nature of output data.

Module-5

- Explain Initialization Bias in steady-state simulations and error estimation for steady-state simulations. (10 Marks)
 - b. Discuss replication method for steady-state simulations and batch means for interval (10 Marks) estimation in steady-state simulations.

OR

- Explain with neat diagram, model building, verification and validation. (10 Marks) 10
 - Explain three step approach for validation process as formulated by Naylor and Finger.

(10 Marks)